place

Orsan

Aire d'attraction de Bagnols-sur-CèzeArticle avec module Population de FranceArticle avec modèle Infobox Commune de FranceArticle de Wikipédia avec notice d'autoritéArticle géolocalisé en France
Article géolocalisé sur TerreArticle manquant de références/Liste complèteArticle manquant de références depuis octobre 2015Article utilisant une InfoboxCommune dans l'arrondissement de NîmesCommune dans le GardPage avec des cartesPage pointant vers des bases externesPage pointant vers des bases relatives à la géographiePage pointant vers des bases relatives à plusieurs domaines
Orsan seen of CDC
Orsan seen of CDC

Orsan est une commune française située dans le nord-est du département du Gard, en région Occitanie. Exposée à un climat méditerranéen, elle est drainée par la Cèze et par divers autres petits cours d'eau. La commune possède un patrimoine naturel remarquable : un site Natura 2000 (« la Cèze et ses gorges ») et deux zones naturelles d'intérêt écologique, faunistique et floristique. Orsan est une commune urbaine qui compte 1 194 habitants en 2021, après avoir connu une forte hausse de la population depuis 1962. Elle est dans l'agglomération de Bagnols-sur-Cèze et fait partie de l'aire d'attraction de Bagnols-sur-Cèze. Ses habitants sont appelés les Orsanais ou Orsanaises.

Extrait de l'article de Wikipedia Orsan (Licence: CC BY-SA 3.0, Auteurs, Matériel visuel / Photos).

Orsan
Route du Camp de César, Nîmes

Coordonnées géographiques (GPS) Adresse Lieux à proximité
placeAfficher sur la carte

Wikipedia: OrsanContinuer à lire sur Wikipedia

Coordonnées géographiques (GPS)

Latitude Longitude
N 44.1322 ° E 4.6669 °
placeAfficher sur la carte

Adresse

Route du Camp de César 13
30200 Nîmes
Occitanie, France
mapOuvrir sur Google Maps

Orsan seen of CDC
Orsan seen of CDC
Partager l'expérience

Lieux à proximité

Réacteur nucléaire G3

Le réacteur nucléaire G3 est un réacteur nucléaire militaire construit à partir de 1956 par le Commissariat à l'énergie atomique (CEA) à Marcoule, et actuellement en phase de démantèlement nucléaire. Il utilisait de l'uranium naturel (non enrichi) comme combustible nucléaire, et était modéré par du graphite, dont il tient son nom G3 (G pour graphite). Plus gros que leur prédécesseur G1, les réacteurs G2 et G3 - d'une puissance thermique de 250 mégawatt chacun - étaient refroidis non pas par de l'air comme G1 mais par un gaz sous pression en circuit fermé, le dioxyde de carbone (CO2), à l'instar du réacteur EL2 fonctionnant depuis 1952 au centre CEA de Saclay. Il s'agit donc des deux premiers réacteurs de la filière française des réacteurs à l'uranium naturel graphite gaz (UNGG). Le réacteur G3 a été mis en service le 8 juin 1959. Son combustible nucléaire était fourni par l'usine du Bouchet puis l'usine de Malvesi. Le plutonium produit par G3 fut extrait à l'usine de plutonium UP1 puis employé pour des essais nucléaires français. Pour modérer la réaction de fission nucléaire, les 12 000 barres de combustible de G3 étaient insérées dans un bloc de 1 200 tonnes de graphite percé d'environ 50 puits verticaux prévus pour le passage des barres de contrôle et de sécurité. Avec G1 et G3, G2 produisit environ 100 kg de plutonium par an. L'utilisation du combustible de G3, comme G1 et G2, n'était pas optimale d'un point de vue économique, parce qu'il était maintenu juste assez longtemps dans la pile pour produire du plutonium. Dès mai 1955, EDF était associée aux études du projet d'une installation de production d'électricité de 40 mégawatts électrique. L'installation fut couplée au réseau électrique en avril 1960. Cette collaboration avec le CEA a permis à EDF de construire le réacteur EDF1 dans la centrale nucléaire de Chinon, qui produira de l'électricité à partir du 14 juin 1963. Le réacteur G3 est arrêté définitivement en 1984. Les opérations d’assainissement puis de démantèlement de G3 ont débuté en 1986. La première phase de démantèlement a consisté à déposer l’ensemble des circuits externes, notamment celui de refroidissement, et à assurer le confinement des blocs réacteurs. Elle s’est achevée en 1996. Selon le CEA, le démantèlement complet reprendra en 2020 lorsque la radioactivité résiduelle aura décru et que le stockage des déchets sera possible, pour s'achever en 2035.

Astrid (réacteur)
Astrid (réacteur)

Astrid ou ASTRID (acronyme de l'anglais Advanced Sodium Technological Reactor for Industrial Demonstration) est un projet de prototype de réacteur nucléaire français de quatrième génération, de type réacteur rapide refroidi au sodium, porté par le Commissariat à l'énergie atomique et aux énergies alternatives (CEA) dans les années 2010 et arrêté en 2019. À la suite des réacteurs expérimentaux Rapsodie, Phénix (250 MWe) et Superphénix (1 240 MWe), le projet Astrid, prototype de puissance intermédiaire (600 MWe), vise à démontrer la possibilité d'un passage au stade industriel de la filière des réacteurs à neutrons rapides au sodium. Le projet est alors présenté comme « doté des meilleurs standards de sûreté du moment ». Il doit tirer « de la ressource disponible cent fois plus d'énergie que ne le font les réacteurs actuellement déployés sur le parc nucléaire français », constitué uniquement de réacteurs à eau pressurisée. Il utilise, pour ce faire, « comme matières premières, les énormes stocks d'uranium 238 constitués par l'exploitation du parc EDF durant des décennies, ainsi que le plutonium extrait des combustibles usés ». S'inscrivant, au-delà d'une perspective historique d’indépendance énergétique, dans un objectif de durabilité, Astrid vise à permettre non seulement d'économiser les ressources fissiles en valorisant l'uranium 238 et en multi-recyclant le plutonium, mais aussi à réduire la quantité de déchets nucléaires à vie longue en incinérant les actinides mineurs. La construction du réacteur Astrid doit ainsi s'accompagner de la mise en service d'un nouvel atelier spécialisé de fabrication de combustible MOx à l'usine de La Hague. Le coût du projet est estimé à plus de cinq milliards d'euros. La décision politique de cet investissement et sa rentabilité, comme pour tout projet de cette envergure, suscitent des controverses. Du fait de contraintes budgétaires, le CEA propose en 2018 de réduire la puissance du réacteur à 100–200 MWe, puis abandonne le projet en 2019. L'organisme précise que « le projet de construction d'un réacteur prototype n'est pas prévu à court ou moyen terme ». Il envisage plutôt de s'en occuper « dans la deuxième moitié du siècle ».